Surveillance Implications of 9/11

Dr. Steven R. Bussolari MIT Lincoln Laboratory 2 May 2002

<bussolari@ll.mit.edu>

50 years This work is sponsored by the Federal Aviation Administration under Air Force Contract #F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Government.

I-CNS-1 SRB 05/13/2002

Outline

- New operational needs
 - Resulting from 9/11/01
 - DoD operational concerns
 - Implications of operational needs
- Existing surveillance capabilities
- Looking ahead
- Summary

FAA Air Traffic Operational Needs

Post September 11, 2001

- Surveillance
 - Continuous primary radar track while cooperative surveillance is lost
 - All available surveillance for a given airspace volume made available to controller responsible for airspace
- Automatic alerting of controller
 - Loss of transponder capability
 - Unexplained deviations from planned route of flight
 - Unexplained deviation from assigned altitude

DoD Operational Concerns Civil Aviation Threat Spectrum

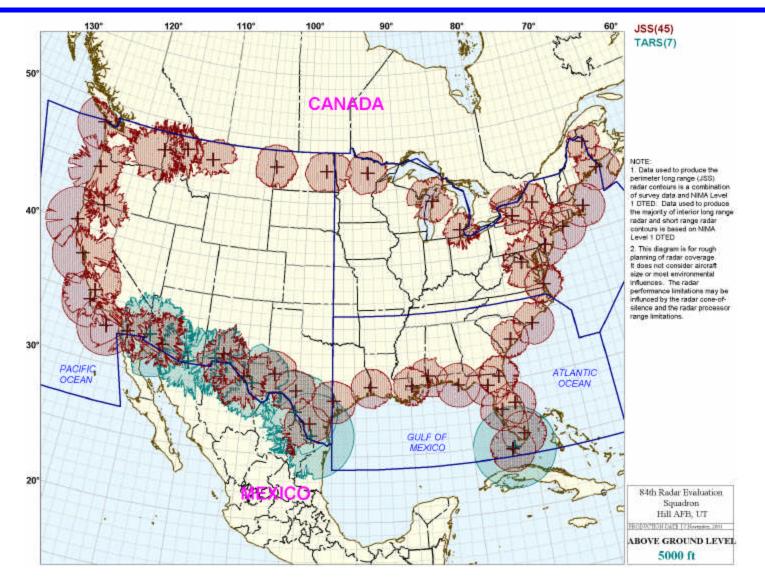
Remotely Piloted Aircraft

Small Jet Aircraft

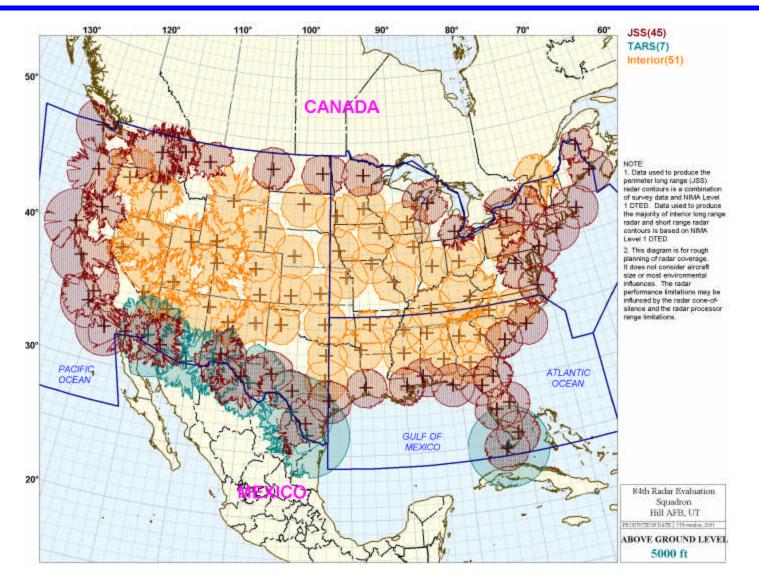
Commercial Airliner

Sailplane

Ultralight

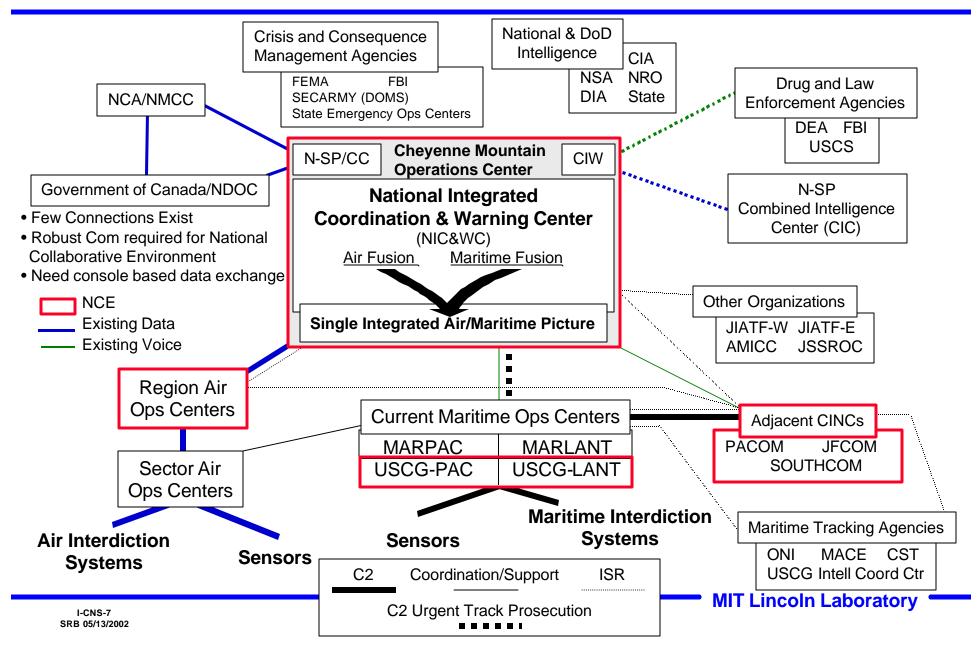

Helicopter

Single Engine Propeller


NORAD Radar Network (CONUS) 9/11/01

MIT Lincoln Laboratory

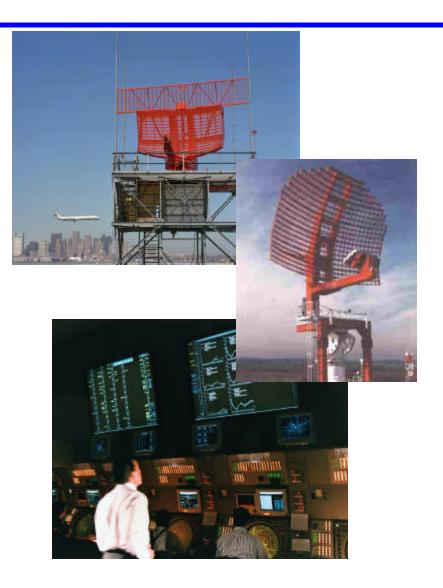
NORAD Radar Network With Additional 51 Interior ATC Radars



MIT Lincoln Laboratory

Proposed National Integration Infrastructure

Source: National Cruise Missile Defense 2000 Study


Implications of FAA Operational Needs Immediately Post 9/11

- Aircraft tracking
 - Track continuity in case of loss of cooperative surveillance
- Surveillance data distribution
 - Must not continue to scale as (# sensors) x (# users)
- Surveillance data integration
 - Need seamless integration of data from multiple sensors
- Conformance monitoring
 - Requires significant reduction in false alarms

Outline

- New operational needs
- Existing surveillance capabilities
 - FAA
 - DoD / Law Enforcement
- Looking ahead
- Summary

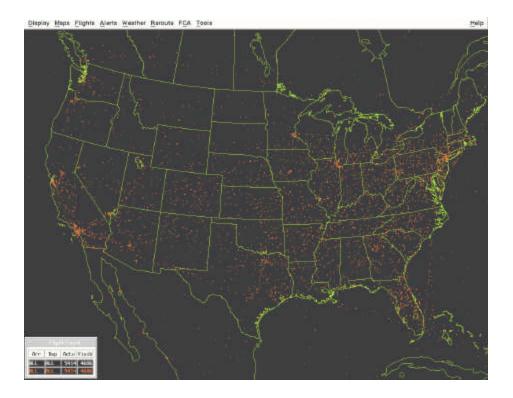
- Two types of radar data
 - Primary (skin paint)
 - Secondary (beacon)
- Terminal RAdar Approach Control (TRACON)
 - 155 facilities in US
 - Uses surveillance data from Airport Surveillance Radar (ASR)
- Air Route Traffic Control Center (ARTCC)
 - 21 facilities in US
 - Uses data from Air Route Surveillance Radar (ARSR) and selected ASR (as gap filler)

FAA Airport Surveillance Radars (ASR)

	Location	<u>Number of Sites</u>	<u>Range</u>	<u>Update Period</u>	<u>Height Finding</u>	<u>Status</u>
ASR-7	Airports	30	5-60 nmi	4.8 sec	Νο	To be replaced by ASR-11
ASR-8	Airports	65	5-60 nmi	4.8 sec	No	To be replaced by ASR-11
ASR-9	Principal Airports	134	0.25-60 nmi	4.8 sec	Νο	Service Life Extension Program Underway
ASR-11	Airports	104	0.25-60 nmi	4.8 sec	Νο	FAA / USAF new acquisition
ASR-11 K 4-32N 51-11 M S\$RFE-(05/18/220022					MIT Lincoln I	aboratory

M SSIREK 0551 8320022

FAA Air Route Surveillance Radars (ARSR)


	Location	Number of Sites	<u>Range</u>	<u>Update Period</u>	<u>Height Finding</u>	<u>Status</u>
AR SR - 1/2	Internal CONUS	45	200 nmi	10 sec	Νο	Near end of service life
ARSR-3	Internal CONUS	13	5-200 nmi	12 sec	No	Near end of service life
	Perimeter CONUS	42	5-200 nmi	12 sec	Yes	FAA / DoD Dual use radar

ARSR-4

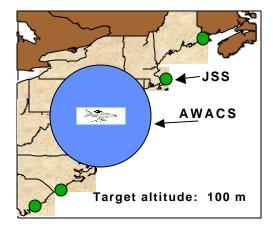
Enhanced Traffic Management System (ETMS)

- Designed as a strategic traffic flow management tool
- Receives flight plan and aircraft position data from FAA TRACON and ARTCC facilities
 - Update period ~ 1 min
- Operated by DoT VNTSC
 - Data assembled in Cambridge, MA
 - Data disseminated to FAA, airlines, and other users

Military Ground-Based Surveillance Radars

Selected Examples

	LOCATION	NUMBER OF SITES	RANGE	UPDATE PERIOD	ALTITUDE CAPABILITY	MISCELLANEOUS
AN/FPS-117	North Warning System, Alaska, Foreign Countries	~100	250 nmi	10-12 secs (360°)	Yes, ~1100 ft @ 100 nmi	IFF included, fixed site or transportable
AN/TPS-59	U.S., Egypt	~15	300 nmi	5, 10 secs (360°)	Yes, ~1000 ft @ 100 nmi	IFF included, transportable
AN/MPQ-64 Sentinel	Mobile system (U.S. Army)	>100 (as of 1998)	20 nmi	2 secs (360°)	Yes, ~200 ft @ 10 nmi	IFF included, mobile, gap filler

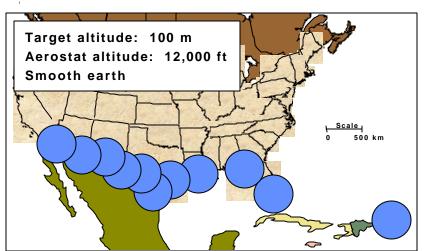

I-CNS-14 SRB 05/13/2002

AWACS E-3 Sentry

- The E-3 Airborne Warning and Control System (AWACS) provides Airborne Early Warning (AEW) and C2 in support of air defense
 - 34 E-3s in U.S. inventory, additional AWACS are deployed with NATO and with foreign nations
 - Air surveillance of small civil aircraft to radar horizon 360° coverage 10 sec update period
 - IFF capability included
 - Maritime surveillance capability also available

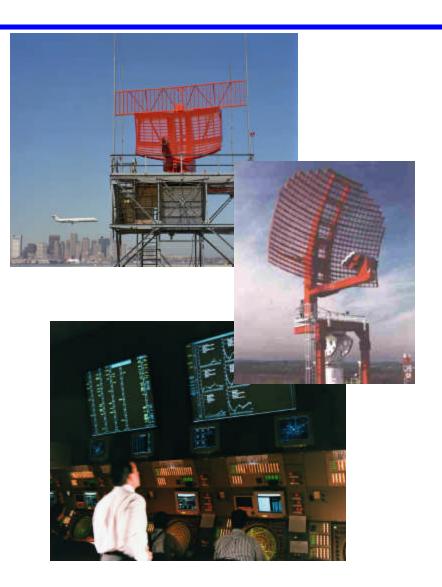
Radar Line-of-Sight Coverage

MIT Lincoln Laboratory



Tethered Aerostat Radar System (TARS)

- TARS provides air surveillance coverage along the southern border of the U.S. and Puerto Rico
 - Primary mission: detection of drug smuggling aircraft
 - Established by U.S Customs
 Service, currently operated by DoD
 - 10 CONUS sites from Arizona to Florida
 - Operating altitude: 10-15 kft
 - Radar horizon: 250-300 km


Radar Line-of-Sight Coverage

MIT Lincoln Laboratory

Outline

- New operational needs
- Existing surveillance capabilities
- Looking ahead
 - Surveillance Data Network
 - Sensor enhancements
- Summary

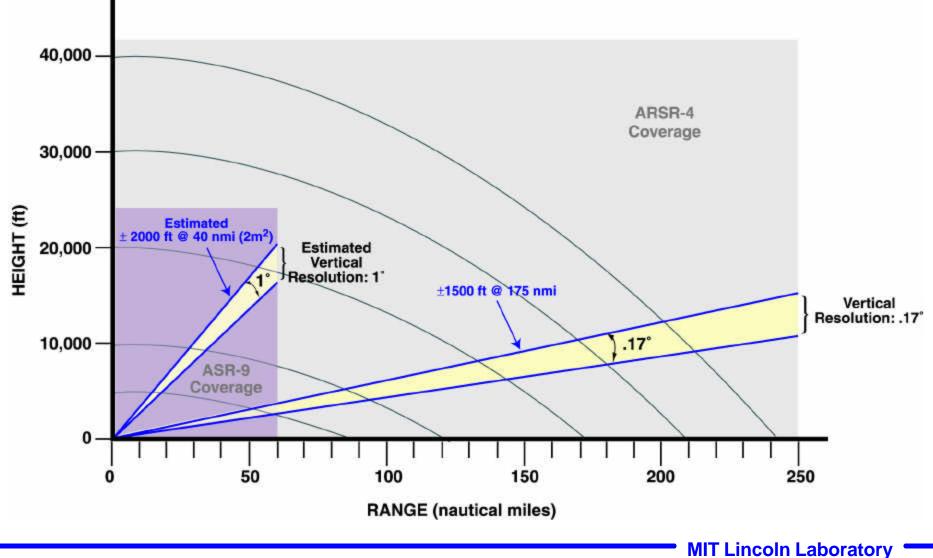
• Existing NAS surveillance data distribution

- Costly to build and maintain
- Not robust in the presence of sensor failures
- Existing surveillance data formats (e.g., CD-2)
 - Do not support the gains in surveillance accuracy achieved over past 40 years
 - As a consequence, the NAS cannot exploit the existing and future capability of its surveillance sensors

Proposed Surveillance Data Network (SDN)

I-CNS-19 SRB 05/13/2002

Sensor Enhancement Example


Height Finding Capability of Existing ATC Primary Radars

	LOCATION	RANGE	ELEVATION ANTENNA	ACCURACY (ELEVATION)	STATUS
ARSR-4	Perimeter CONUS	5-200 nmi	Multiple Stacked Beam	±1500 ft @ 175 nmi (2m ²)	Operational
ARSR-3	Internal CONUS	5-200 nmi	High/Low Beams	TBD	TBD
ASR-9	Principal Airports	0.25-60 nmi	High/Low Beams	±2000 ft @ 40 nmi (2m²) (estimated) I	Concept Demonstrated
ASR-11	Airports	0.25-60 nmi	High/Low Beams	TBD	TBD
K (4-42)N (6+20 M SSDEEK (1641 9429 MD2				MIT Lincoln La	ooratory

K 9-8(218) 651-210 M S SHRTEK 055/18/220022

Potential Height Finding Accuracy with Existing ATC Radars

- Provide DoD with FAA radar data to cover interior CONUS
 - Already underway with numerous FAA sensors
- Develop integrated national air picture
 - Integrate surveillance data from multiple sensors in CONUS with flight data from FAA to form a seamless and common air picture
- Develop anomalous event reporting system
 - Provide automated or semi-automated means for ATC to send anomaly information to DoD and Law Enforcement
- Improve quality of integrated national air picture
 - Increase sensor and automated tracking performance

Summary

- Many sensors, no common integrated air picture
 - FAA, DoD, Law Enforcement operate separate sensor networks
 - Wide spectrum of sensor capabilities
 - Very little integration of sensor data
- Recommended first step is to create common air picture with existing sensors
 - Connectivity, integration, and data dissemination
 - Architecture should permit addition of sensors as well as increase in sensor capability as required